Home
A Tour of Data Science: Learn R and Python Parallel
Barnes and Noble
A Tour of Data Science: Learn R and Python Parallel
Current price: $170.00
Barnes and Noble
A Tour of Data Science: Learn R and Python Parallel
Current price: $170.00
Size: Hardcover
Loading Inventory...
*Product information may vary - to confirm product availability, pricing, shipping and return information please contact Barnes and Noble
A Tour of Data Science: Learn R and Python in Parallel
covers the fundamentals of data science, including programming, statistics, optimization, and machine learning in a single short book. It does not cover everything, but rather, teaches the key concepts and topics in Data Science. It also covers two of the most popular programming languages used in Data Science, R and Python, in one source.
Key features:
Allows you to learn R and Python in parallel
Cover statistics, programming, optimization and predictive modelling, and the popular data manipulation tools – data.table and pandas
Provides a concise and accessible presentation
Includes machine learning algorithms implemented from scratch, linear regression, lasso, ridge, logistic regression, gradient boosting trees, etc.
Appealing to data scientists, statisticians, quantitative analysts, and others who want to learn programming with R and Python from a data science perspective.
covers the fundamentals of data science, including programming, statistics, optimization, and machine learning in a single short book. It does not cover everything, but rather, teaches the key concepts and topics in Data Science. It also covers two of the most popular programming languages used in Data Science, R and Python, in one source.
Key features:
Allows you to learn R and Python in parallel
Cover statistics, programming, optimization and predictive modelling, and the popular data manipulation tools – data.table and pandas
Provides a concise and accessible presentation
Includes machine learning algorithms implemented from scratch, linear regression, lasso, ridge, logistic regression, gradient boosting trees, etc.
Appealing to data scientists, statisticians, quantitative analysts, and others who want to learn programming with R and Python from a data science perspective.