Home
Designing Machine Learning Systems: An Iterative Process for Production-Ready Applications
Barnes and Noble
Loading Inventory...
Designing Machine Learning Systems: An Iterative Process for Production-Ready Applications
Current price: $49.99

Barnes and Noble
Designing Machine Learning Systems: An Iterative Process for Production-Ready Applications
Current price: $49.99
Loading Inventory...
Size: Audio CD
*Product information may vary - to confirm product availability, pricing, shipping and return information please contact Barnes and Noble
Machine learning systems are both complex and unique. Complex because they consist of many different components and involve many different stakeholders. Unique because they're data dependent, with data varying wildly from one use case to the next. In this book, you'll learn a holistic approach to designing ML systems that are reliable, scalable, maintainable, and adaptive to changing environments and business requirements.
Author Chip Huyen, co-founder of Claypot AI, considers each design decisionsuch as how to process and create training data, which features to use, how often to retrain models, and what to monitorin the context of how it can help your system as a whole achieve its objectives. The iterative framework in this book uses actual case studies backed by ample references.
This book will help you tackle scenarios such as:
Engineering data and choosing the right metrics to solve a business problem
Automating the process for continually developing, evaluating, deploying, and updating models
Developing a monitoring system to quickly detect and address issues your models might encounter in production
Architecting an ML platform that serves across use cases
Developing responsible ML systems
Author Chip Huyen, co-founder of Claypot AI, considers each design decisionsuch as how to process and create training data, which features to use, how often to retrain models, and what to monitorin the context of how it can help your system as a whole achieve its objectives. The iterative framework in this book uses actual case studies backed by ample references.
This book will help you tackle scenarios such as:
Engineering data and choosing the right metrics to solve a business problem
Automating the process for continually developing, evaluating, deploying, and updating models
Developing a monitoring system to quickly detect and address issues your models might encounter in production
Architecting an ML platform that serves across use cases
Developing responsible ML systems
Machine learning systems are both complex and unique. Complex because they consist of many different components and involve many different stakeholders. Unique because they're data dependent, with data varying wildly from one use case to the next. In this book, you'll learn a holistic approach to designing ML systems that are reliable, scalable, maintainable, and adaptive to changing environments and business requirements.
Author Chip Huyen, co-founder of Claypot AI, considers each design decisionsuch as how to process and create training data, which features to use, how often to retrain models, and what to monitorin the context of how it can help your system as a whole achieve its objectives. The iterative framework in this book uses actual case studies backed by ample references.
This book will help you tackle scenarios such as:
Engineering data and choosing the right metrics to solve a business problem
Automating the process for continually developing, evaluating, deploying, and updating models
Developing a monitoring system to quickly detect and address issues your models might encounter in production
Architecting an ML platform that serves across use cases
Developing responsible ML systems
Author Chip Huyen, co-founder of Claypot AI, considers each design decisionsuch as how to process and create training data, which features to use, how often to retrain models, and what to monitorin the context of how it can help your system as a whole achieve its objectives. The iterative framework in this book uses actual case studies backed by ample references.
This book will help you tackle scenarios such as:
Engineering data and choosing the right metrics to solve a business problem
Automating the process for continually developing, evaluating, deploying, and updating models
Developing a monitoring system to quickly detect and address issues your models might encounter in production
Architecting an ML platform that serves across use cases
Developing responsible ML systems

















