The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
Federated Learning for the Internet of Vehicles

Federated Learning for the Internet of Vehicles

Current price: $75.00
CartBuy Online
Federated Learning for the Internet of Vehicles

Barnes and Noble

Federated Learning for the Internet of Vehicles

Current price: $75.00
Loading Inventory...

Size: OS

CartBuy Online
*Product information may vary - to confirm product availability, pricing, shipping and return information please contact Barnes and Noble
The rapid evolution of the Internet of Vehicles (IoV) introduces significant advancements in smart transportation systems, yet also presents critical challenges in data security, privacy, and real-time decision-making. This study proposes a Federated Learning (FL)-based security framework for IoV, integrating Federated Averaging (FedAvg) and Differential Privacy (DP) to enhance cybersecurity while preserving data privacy. The proposed model leverages decentralized machine learning techniques to mitigate security threats, reduce reliance on raw data transmission, and prevent unauthorized access to sensitive vehicle and user data. Through extensive empirical analysis using real-world cybersecurity datasets, this research evaluates the performance, scalability, and efficiency of FL-based security mechanisms compared to conventional approaches.
The rapid evolution of the Internet of Vehicles (IoV) introduces significant advancements in smart transportation systems, yet also presents critical challenges in data security, privacy, and real-time decision-making. This study proposes a Federated Learning (FL)-based security framework for IoV, integrating Federated Averaging (FedAvg) and Differential Privacy (DP) to enhance cybersecurity while preserving data privacy. The proposed model leverages decentralized machine learning techniques to mitigate security threats, reduce reliance on raw data transmission, and prevent unauthorized access to sensitive vehicle and user data. Through extensive empirical analysis using real-world cybersecurity datasets, this research evaluates the performance, scalability, and efficiency of FL-based security mechanisms compared to conventional approaches.

More About Barnes and Noble at The Summit

With an excellent depth of book selection, competitive discounting of bestsellers, and comfortable settings, Barnes & Noble is an excellent place to browse for your next book.

Powered by Adeptmind