The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
Triangular Products of Group Representations and Their Applications

Triangular Products of Group Representations and Their Applications

Current price: $54.99
CartBuy Online
Triangular Products of Group Representations and Their Applications

Barnes and Noble

Triangular Products of Group Representations and Their Applications

Current price: $54.99
Loading Inventory...

Size: OS

CartBuy Online
*Product information may vary - to confirm product availability, pricing, shipping and return information please contact Barnes and Noble
The construction considered in these notes is based on a very simple idea. Let (A, G ) and (B, G ) be two group representations, for definiteness faithful and finite­ 1 2 dimensional, over an arbitrary field. We shall say that a faithful representation (V, G) is an extension of (A, G ) by (B, G ) if there is a G-submodule W of V such that 1 2 the naturally arising representations (W, G) and (V/W, G) are isomorphic, modulo their kernels, to (A, G ) and (B, G ) respectively. 1 2 Question. Among all the extensions of (A, G ) by (B, G ), does there exist 1 2 such a "universal" extension which contains an isomorphic copy of any other one? The answer is in the affirmative. Really, let dim A = m and dim B = n, then the groups G and G may be considered as matrix groups of degrees m and n 1 2 respectively. If (V, G) is an extension of (A, G ) by (B, G ) then, under certain 1 2 choice of a basis in V, all elements of G are represented by (m + n) x (m + n) mat­ rices of the form (*) ~1-~ ~-J lh I g2 I .
The construction considered in these notes is based on a very simple idea. Let (A, G ) and (B, G ) be two group representations, for definiteness faithful and finite­ 1 2 dimensional, over an arbitrary field. We shall say that a faithful representation (V, G) is an extension of (A, G ) by (B, G ) if there is a G-submodule W of V such that 1 2 the naturally arising representations (W, G) and (V/W, G) are isomorphic, modulo their kernels, to (A, G ) and (B, G ) respectively. 1 2 Question. Among all the extensions of (A, G ) by (B, G ), does there exist 1 2 such a "universal" extension which contains an isomorphic copy of any other one? The answer is in the affirmative. Really, let dim A = m and dim B = n, then the groups G and G may be considered as matrix groups of degrees m and n 1 2 respectively. If (V, G) is an extension of (A, G ) by (B, G ) then, under certain 1 2 choice of a basis in V, all elements of G are represented by (m + n) x (m + n) mat­ rices of the form (*) ~1-~ ~-J lh I g2 I .

More About Barnes and Noble at The Summit

With an excellent depth of book selection, competitive discounting of bestsellers, and comfortable settings, Barnes & Noble is an excellent place to browse for your next book.

Powered by Adeptmind