The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Hands-On GPU Programming with Python and CUDA

Current price: $48.99
Hands-On GPU Programming with Python and CUDA
Hands-On GPU Programming with Python and CUDA

Barnes and Noble

Hands-On GPU Programming with Python and CUDA

Current price: $48.99

Size: Paperback

Loading Inventory...
CartBuy Online
*Product information may vary - to confirm product availability, pricing, shipping and return information please contact Barnes and Noble
Build real-world applications with Python 2.7, CUDA 9, and CUDA 10. We suggest the use of Python 2.7 over Python 3.x, since Python 2.7 has stable support across all the libraries we use in this book.
Expand your background in GPU programming—PyCUDA, scikit-cuda, and Nsight
Effectively use CUDA libraries such as cuBLAS, cuFFT, and cuSolver
Apply GPU programming to modern data science applications
Hands-On GPU Programming with Python and CUDA hits the ground running: you’ll start by learning how to apply Amdahl’s Law, use a code profiler to identify bottlenecks in your Python code, and set up an appropriate GPU programming environment. You’ll then see how to “query” the GPU’s features and copy arrays of data to and from the GPU’s own memory.
As you make your way through the book, you’ll launch code directly onto the GPU and write full blown GPU kernels and device functions in CUDA C. You’ll get to grips with profiling GPU code effectively and fully test and debug your code using Nsight IDE. Next, you’ll explore some of the more well-known NVIDIA libraries, such as cuFFT and cuBLAS.
With a solid background in place, you will now apply your new-found knowledge to develop your very own GPU-based deep neural network from scratch. You’ll then explore advanced topics, such as warp shuffling, dynamic parallelism, and PTX assembly. In the final chapter, you’ll see some topics and applications related to GPU programming that you may wish to pursue, including AI, graphics, and blockchain.
By the end of this book, you will be able to apply GPU programming to problems related to data science and high-performance computing.
Launch GPU code directly from Python
Write effective and efficient GPU kernels and device functions
Use libraries such as cuFFT, cuBLAS, and cuSolver
Debug and profile your code with Nsight and Visual Profiler
Apply GPU programming to datascience problems
Build a GPU-based deep neuralnetwork from scratch
Explore advanced GPU hardware features, such as warp shuffling
Hands-On GPU Programming with Python and CUDA is for developers and data scientists who want to learn the basics of effective GPU programming to improve performance using Python code. You should have an understanding of first-year college or university-level engineering mathematics and physics, and have some experience with Python as well as in any C-based programming language such as C, C++, Go, or Java.

More About Barnes and Noble at The Summit

With an excellent depth of book selection, competitive discounting of bestsellers, and comfortable settings, Barnes & Noble is an excellent place to browse for your next book.

Powered by Adeptmind