Home
Heterostructure Epitaxy and Devices
Barnes and Noble
Heterostructure Epitaxy and Devices
Current price: $54.99
Barnes and Noble
Heterostructure Epitaxy and Devices
Current price: $54.99
Size: OS
Loading Inventory...
*Product information may vary - to confirm product availability, pricing, shipping and return information please contact Barnes and Noble
From October 15 to 19, 1995 a Workshop on Hetero- structureEpitaxyandDeviceswasheldatSmoleniceCastlenear Slovakia'scapital Bratislava. The intention ofthisWorkshop was toestablishandstrengthentiesbetweenscientistsoftheformerly Socialist East and Middle-European states with their colleagues fromtheWesterncountries. WiththisaimtheWorkshopfoundthe financialsupportbyNATOwhichtremendouslyhelpedtofacilitate organizingthemeeting That the Workshop was also a scientific success is evidenced by the present volume comprising a selection of the contributed papers. We are confident that the reader of these Proceedings can convincehimselfofthe highqualityofthe work whose results are presented here. We hope that this and the numerousdiscussionsbetweenthe participants ofthe Workshop will promote cooperations among scientists from the countries representedatthemeeting. It is a pleasure to express our gratitude to NATO and, as representatives ofthe institutions involved in the organization, to Lubomir Malacky (Institute of Electrical Engineering, Slovak Academy of Sciences) and Hergo-Heinrich Wehmann (Institute for Semiconductor Technology, Technical University Braun- schweig) whose dedicated work was most essential for the Workshop. A. Schlachetzki J. Novak November1995 xiii SIMULATIONOFIII-VLAYERGROWTH y. ARIMA DepartmentofPhysics, Gakushuin University 1-5-1 Mejiro, Toshima-ku, Tokyo 171, Japan AND T. IRISAWA ComputerCenter, Gakushuin University 1-5-1 Mejiro, Toshima-ku, Tokyo 171, Japan 1. Introduction Since it was reported [1] that the intensities of RHEED for the growing surface of aGaAs crystal in the process of MBE oscillate with a period correspondingto the completion of a monolayer, this phenomenon has been applied to the thin layer growth of man-made superlattices.