Home
Optimal Control of Stochastic Difference Volterra Equations: An Introduction
Barnes and Noble
Optimal Control of Stochastic Difference Volterra Equations: An Introduction
Current price: $109.99


Barnes and Noble
Optimal Control of Stochastic Difference Volterra Equations: An Introduction
Current price: $109.99
Size: Hardcover
Loading Inventory...
*Product information may vary - to confirm product availability, pricing, shipping and return information please contact Barnes and Noble
This book showcases a subclass of hereditary systems, that is, systems with behaviour depending not only on their current state but also on their past history; it is an introduction to the mathematical theory of optimal control for shastic difference Volterra equations of neutral type. As such, it will be of much interest to researchers interested in modelling processes in physics, mechanics, automatic regulation, economics and finance, biology, sociology and medicine for all of which such equations are very popular tools.
The text deals with problems of optimal control such as meeting given performance criteria, and stabilization, extending them to neutral shastic difference Volterra equations. In particular, it contrasts the difference analogues of solutions to optimal control and optimal estimation problems for shastic integral Volterra equations with optimal solutions for corresponding problems in shastic difference Volterra equations.
Optimal Control of Shastic Difference Volterra Equations
commences with an historical introduction to the emergence of this type of equation with some additional mathematical preliminaries. It then deals with the necessary conditions for optimality in the control of the equations and constructs a feedback control scheme. The approximation of shastic quasilinear Volterra equations with quadratic performance functionals is then considered. Optimal stabilization is discussed and the filtering problem formulated. Finally, two methods of solving the optimal control problem for partly observable linear shastic processes, also with quadratic performance functionals, are developed.
Integrating the author’s own research within the context of the current state-of-the-art of research in difference equations, hereditary systems theory and optimal control, this book is addressed tospecialists in mathematical optimal control theory and to graduate students in pure and applied mathematics and control engineering.
The text deals with problems of optimal control such as meeting given performance criteria, and stabilization, extending them to neutral shastic difference Volterra equations. In particular, it contrasts the difference analogues of solutions to optimal control and optimal estimation problems for shastic integral Volterra equations with optimal solutions for corresponding problems in shastic difference Volterra equations.
Optimal Control of Shastic Difference Volterra Equations
commences with an historical introduction to the emergence of this type of equation with some additional mathematical preliminaries. It then deals with the necessary conditions for optimality in the control of the equations and constructs a feedback control scheme. The approximation of shastic quasilinear Volterra equations with quadratic performance functionals is then considered. Optimal stabilization is discussed and the filtering problem formulated. Finally, two methods of solving the optimal control problem for partly observable linear shastic processes, also with quadratic performance functionals, are developed.
Integrating the author’s own research within the context of the current state-of-the-art of research in difference equations, hereditary systems theory and optimal control, this book is addressed tospecialists in mathematical optimal control theory and to graduate students in pure and applied mathematics and control engineering.