Home
Thermal Stresses Plates and Shells
Barnes and Noble
Thermal Stresses Plates and Shells
Current price: $129.99
Barnes and Noble
Thermal Stresses Plates and Shells
Current price: $129.99
Size: Hardcover
Loading Inventory...
*Product information may vary - to confirm product availability, pricing, shipping and return information please contact Barnes and Noble
This book covers thermal stresses in plates and shells, offering a cutting-edge exploration of this critical field. Tailored for a diverse audience, including graduate and postgraduate students, dedicated researchers, and scientists in both industrial and government sectors, as well as engineers specializing in mechanical, aerospace, and civil engineering. The book unfolds over eight meticulously crafted chapters, providing a detailed examination of thermal stresses in rectangular and circular plates, along with an array of shell geometries. Circular cylindrical, spherical, conical, and shells of revolution undergo rigorous analysis under various load conditions. A focal point of the text lies in the exhaustive treatment of tensor analysis within a curvilinear coordinate system. This framework lays the foundation for the derivation of precise strain-displacement relations for an array of shell configurations. The book further elucidates the transformation of Codazzi and Gauss conditions from surface continuity to compatibility conditions within elasticity theory. Chapter 5 introduces analytical solutions for diverse thermal loads affecting cylindrical, spherical, and conical shells. Chapters 6 and 7 delve into the intricate domain of coupled thermoelasticity, particularly in plates and shells subjected to shock loads. The book culminates in Chapter 8, where the intriguing phenomenon of thermal-induced vibrations in plates and shells takes center stage. With a commitment to accessibility, this self-contained volume presents mathematical concepts and numerical methods in an approachable manner, ensuring ease of comprehension for the reader. However, a foundational understanding of classical mathematics, mechanics, and elasticity theory is recommended for optimal engagement.